Python-ElasticSearch 搜索查询示例:搜索用法
Elasticsearch 是一个基于全文搜索引擎库 Apache Lucene™ 构建的开源搜索引擎。 Lucene 可能是当今最先进、高性能且功能齐全的搜索引擎库,无论是开源的还是专有的。但Lucene只是一个库。要利用它,您必须编写一个 Java 程序并将 Lucene 包直接集成到您的 java 程序中。更糟糕的情况是,您需要对信息检索有一定程度的了解才能了解 Lucene 的工作原理。 Lucene 非常复杂。
在上一篇文章中,我们介绍了ElasticSearch的简单使用。接下来,记录ElasticSearch查询:
查询所有数据
# 搜索所有数据 es.search(index="my_index",doc_type="test_type") # 或者 body = { "query":{ "match_all":{} } } es.search(index="my_index",doc_type="test_type",body=body)
terms和terms
# term body = { "query":{ "term":{ "name":"python" } } } # 查询name="python"的所有数据 es.search(index="my_index",doc_type="test_type",body=body) # terms body = { "query":{ "terms":{ "name":[ "python","android" ] } } } # 搜索出name="python"或name="android"的所有数据 es.search(index="my_index",doc_type="test_type",body=body)
match和multi_match
# match:匹配name包含python关键字的数据 body = { "query":{ "match":{ "name":"python" } } } # 查询name包含python关键字的数据 es.search(index="my_index",doc_type="test_type",body=body) # multi_match:在name和addr里匹配包含深圳关键字的数据 body = { "query":{ "multi_match":{ "query":"深圳", "fields":["name","addr"] } } } # 查询name和addr包含"深圳"关键字的数据 es.search(index="my_index",doc_type="test_type",body=body)
ids
body = { "query":{ "ids":{ "type":"test_type", "values":[ "1","2" ] } } } # 搜索出id为1或2d的所有数据 es.search(index="my_index",doc_type="test_type",body=body)
Bool查询组件
满足的查询必须有三种类型),应该be(满足其中之一)、must_not满足(不满足)
body = { "query":{ "bool":{ "must":[ { "term":{ "name":"python" } }, { "term":{ "age":18 } } ] } } } # 获取name="python"并且age=18的所有数据 es.search(index="my_index",doc_type="test_type",body=body)
切片查询
body = { "query":{ "match_all":{} } "from":2 # 从第二条数据开始 "size":4 # 获取4条数据 } # 从第2条数据开始,获取4条数据 es.search(index="my_index",doc_type="test_type",body=body)
范围查询
body = { "query":{ "range":{ "age":{ "gte":18, # >=18 "lte":30 # <=30 } } } } # 查询18<=age<=30的所有数据 es.search(index="my_index",doc_type="test_type",body=body)
前缀查询
body = { "query":{ "prefix":{ "name":"p" } } } # 查询前缀为"赵"的所有数据 es.search(index="my_index",doc_type="test_type",body=body)
通配符查询
body = { "query":{ "wildcard":{ "name":"*id" } } } # 查询name以id为后缀的所有数据 es.search(index="my_index",doc_type="test_type",body=body)
排序‾thResponsfil过滤器 count 执行查询并获取类聚合查询的匹配数度量查询查询查询设置最小值etget最大值# 只需要获取_id数据,多个条件用逗号隔开
es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._id"])
# 获取所有数据
es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._*"])
body = {
"query":{
"match_all":{}
},
"aggs":{ # 聚合查询
"max_age":{ # 最大值的key
"max":{ # 最大
"field":"age" # 查询"age"的最大值
}
}
}
}
# 搜索所有数据,并获取age最大的值
es.search(index="my_index",doc_type="test_type",body=body)
body = {
"query":{
"match_all":{}
},
"aggs":{ # 聚合查询
"sum_age":{ # 和的key
"sum":{ # 和
"field":"age" # 获取所有age的和
}
}
}
}
# 搜索所有数据,并获取所有age的和
es.search(index="my_index",doc_type="test_type",body=body)
body = {
"query":{
"match_all":{}
},
"aggs":{ # 聚合查询
"avg_age":{ # 平均值的key
"sum":{ # 平均值
"field":"age" # 获取所有age的平均值
}
}
}
}
# 搜索所有数据,获取所有age的平均值
es.search(index="my_index",doc_type="test_type",body=body)
版权声明
本文仅代表作者观点,不代表Code前端网立场。
本文系作者Code前端网发表,如需转载,请注明页面地址。
发表评论:
◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。