Code前端首页关于Code前端联系我们

NumPy 教程:迭代器对象 numpy.nditer 数组上的迭代

terry 2年前 (2023-09-25) 阅读数 50 #后端开发

NumPy - 数组上的迭代

NumPy 包包含一个迭代器对象 nditer。它是一个有效的多维迭代器对象,可用于迭代数组。数组的每个元素都可以使用 Python 的标准 Iterator 接口进行访问。

让我们使用函数 arange() 创建一个 3X4 矩阵,并使用 nditer 对其进行迭代。

示例 1

import numpy as np
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  '原始数组是:'  
print a print  '\n'  
print  '修改后的数组是:'  
for x in np.nditer(a):  
    print x,
Python

输出如下:

原始数组是:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

修改后的数组是:
0 5 10 15 20 25 30 35 40 45 50 55
Python

示例 2

迭代顺序与数组的内容布局相匹配,无论具体顺序如何。这可以通过迭代上面数组的转置来看出。

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  '原始数组是:'  
print a 
print  '\n'  
print  '原始数组的转置是:' 
b = a.T 
print b 
print  '\n'  
print  '修改后的数组是:'  
for x in np.nditer(b):  
    print x,
Python

输出如下:

原始数组是:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

原始数组的转置是:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

修改后的数组是:
0 5 10 15 20 25 30 35 40 45 50 55
Python

迭代顺序

迭代器选择更高效的方式对 F 样式进行迭代,以迭代相同的顺序。

示例 1

import numpy as np
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  '原始数组是:'  
print a print  '\n'  
print  '原始数组的转置是:' 
b = a.T 
print b 
print  '\n'  
print  '以 C 风格顺序排序:' 
c = b.copy(order='C')  
print c for x in np.nditer(c):  
    print x,  
print  '\n'  
print  '以 F 风格顺序排序:' 
c = b.copy(order='F')  
print c 
for x in np.nditer(c):  
    print x,
Python

输出如下:

原始数组是:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

原始数组的转置是:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]

以 C 风格顺序排序:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 20 40 5 25 45 10 30 50 15 35 55

以 F 风格顺序排序:
[[ 0 20 40]
 [ 5 25 45]
 [10 30 50]
 [15 35 55]]
0 5 10 15 20 25 30 35 40 45 50 55

示例 2

您可以通过明确提醒强制❓使用顺序: Python

输出如下:

原始数组是:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

以 C 风格顺序排序:
0 5 10 15 20 25 30 35 40 45 50 55

以 F 风格顺序排序:
0 20 40 5 25 45 10 30 50 15 35 55

更改数组的值

nditer该对象还有另一个可选参数♿。默认值为只读,但可以设置为读写或只读模式。这将允许使用此迭代器修改数组元素。

示例

import numpy as np
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  '原始数组是:'  
print a 
print  '\n'  
for x in np.nditer(a, op_flags=['readwrite']): 
    x[...]=2*x 
print  '修改后的数组是:'  
print a

输出如下:

原始数组是:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

修改后的数组是:
[[ 0 10 20 30]
 [ 40 50 60 70]
 [ 80 90 100 110]]

外循环

nditer类构造函数有

序列号 参数及说明
1. c_index 可以跟踪 C 顺序
2 的索引。f_index 可以跟踪 Fortran 顺序
3 的索引。 多索引 每次迭代可以跟踪一种索引类型
4。external_loop 提供的值是多维值的一维数组array 示例

i在下面的示例中,迭代器遍历每一列对应的一维数组。

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  '原始数组是:'  
print a 
print  '\n'  
print  '修改后的数组是:'  
for x in np.nditer(a, flags =  ['external_loop'], order =  'F'):  
    print x,

输出如下:

原始数组是:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

修改后的数组是:
[ 0 20 40] [ 5 25 45] [10 30 50] [15 35 55]

广播迭代

如果两个数组是可广播,则 P⸾❓ 对象能够同时迭代它们。假设矩阵 a 的维度为 3X4,并且还有另一个矩阵 b,维度为 1X4,则使用以下类型的迭代器(矩阵❓b❓ 转换为 a 尺寸)。

示例

import numpy as np 
a = np.arange(0,60,5) 
a = a.reshape(3,4)  
print  '第一个数组:'  
print a 
print  '\n'  
print  '第二个数组:' 
b = np.array([1,  2,  3,  4], dtype =  int)  
print b 
print  '\n'  
print  '修改后的数组是:'  
for x,y in np.nditer([a,b]):  
    print  "%d:%d"  %  (x,y),

输出如下:

第一个数组:
[[ 0 5 10 15]
 [20 25 30 35]
 [40 45 50 55]]

第二个数组:
[1 2 3 4]

修改后的数组是:
0:1 5:2 10:3 15:4 20:1 25:2 30:3 35:4 40:1 45:2 50:3 55:4

版权声明

本文仅代表作者观点,不代表Code前端网立场。
本文系作者Code前端网发表,如需转载,请注明页面地址。

发表评论:

◎欢迎参与讨论,请在这里发表您的看法、交流您的观点。

热门